Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.

Identifieur interne : 000020 ( Main/Exploration ); précédent : 000019; suivant : 000021

In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.

Auteurs : Geleta Dugassa Barka [Brésil, Éthiopie] ; Eveline Teixeira Caixeta [Brésil] ; Sávio Siqueira Ferreira [Brésil] ; Laércio Zambolim [Brésil]

Source :

RBID : pubmed:32639982

Descripteurs français

English descriptors

Abstract

Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.

DOI: 10.1371/journal.pone.0222747
PubMed: 32639982
PubMed Central: PMC7343155


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.</title>
<author>
<name sortKey="Barka, Geleta Dugassa" sort="Barka, Geleta Dugassa" uniqKey="Barka G" first="Geleta Dugassa" last="Barka">Geleta Dugassa Barka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia, Ethiopia.</nlm:affiliation>
<country xml:lang="fr">Éthiopie</country>
<wicri:regionArea>Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia</wicri:regionArea>
<wicri:noRegion>Oromia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caixeta, Eveline Teixeira" sort="Caixeta, Eveline Teixeira" uniqKey="Caixeta E" first="Eveline Teixeira" last="Caixeta">Eveline Teixeira Caixeta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF</wicri:regionArea>
<placeName>
<region type="state">District fédéral (Brésil)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, Savio Siqueira" sort="Ferreira, Savio Siqueira" uniqKey="Ferreira S" first="Sávio Siqueira" last="Ferreira">Sávio Siqueira Ferreira</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zambolim, Laercio" sort="Zambolim, Laercio" uniqKey="Zambolim L" first="Laércio" last="Zambolim">Laércio Zambolim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32639982</idno>
<idno type="pmid">32639982</idno>
<idno type="doi">10.1371/journal.pone.0222747</idno>
<idno type="pmc">PMC7343155</idno>
<idno type="wicri:Area/Main/Corpus">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000014</idno>
<idno type="wicri:Area/Main/Curation">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000014</idno>
<idno type="wicri:Area/Main/Exploration">000014</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.</title>
<author>
<name sortKey="Barka, Geleta Dugassa" sort="Barka, Geleta Dugassa" uniqKey="Barka G" first="Geleta Dugassa" last="Barka">Geleta Dugassa Barka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia, Ethiopia.</nlm:affiliation>
<country xml:lang="fr">Éthiopie</country>
<wicri:regionArea>Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia</wicri:regionArea>
<wicri:noRegion>Oromia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caixeta, Eveline Teixeira" sort="Caixeta, Eveline Teixeira" uniqKey="Caixeta E" first="Eveline Teixeira" last="Caixeta">Eveline Teixeira Caixeta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF</wicri:regionArea>
<placeName>
<region type="state">District fédéral (Brésil)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, Savio Siqueira" sort="Ferreira, Savio Siqueira" uniqKey="Ferreira S" first="Sávio Siqueira" last="Ferreira">Sávio Siqueira Ferreira</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zambolim, Laercio" sort="Zambolim, Laercio" uniqKey="Zambolim L" first="Laércio" last="Zambolim">Laércio Zambolim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Binding Sites (MeSH)</term>
<term>Coffee (classification)</term>
<term>Coffee (genetics)</term>
<term>Disease Resistance (genetics)</term>
<term>Gene Library (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Lycopersicon esculentum (classification)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Open Reading Frames (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Virulence Factors (genetics)</term>
<term>Virulence Factors (metabolism)</term>
<term>Vitis (classification)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Cadres ouverts de lecture (génétique)</term>
<term>Café (classification)</term>
<term>Café (génétique)</term>
<term>Facteurs de virulence (génétique)</term>
<term>Facteurs de virulence (métabolisme)</term>
<term>Génome végétal (MeSH)</term>
<term>Lycopersicon esculentum (classification)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Vitis (classification)</term>
<term>Vitis (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Coffee</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Coffee</term>
<term>Plant Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Café</term>
<term>Lycopersicon esculentum</term>
<term>Protéines végétales</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Lycopersicon esculentum</term>
<term>Open Reading Frames</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Café</term>
<term>Facteurs de virulence</term>
<term>Lycopersicon esculentum</term>
<term>Protéines végétales</term>
<term>Résistance à la maladie</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Gene Library</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
<term>Polymorphism, Genetic</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Banque de gènes</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Polymorphisme génétique</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32639982</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.</ArticleTitle>
<Pagination>
<MedlinePgn>e0222747</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0222747</ELocationID>
<Abstract>
<AbstractText>Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barka</LastName>
<ForeName>Geleta Dugassa</ForeName>
<Initials>GD</Initials>
<Identifier Source="ORCID">0000-0002-1521-9705</Identifier>
<AffiliationInfo>
<Affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia, Ethiopia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caixeta</LastName>
<ForeName>Eveline Teixeira</ForeName>
<Initials>ET</Initials>
<Identifier Source="ORCID">0000-0001-8850-6273</Identifier>
<AffiliationInfo>
<Affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferreira</LastName>
<ForeName>Sávio Siqueira</ForeName>
<Initials>SS</Initials>
<Identifier Source="ORCID">0000-0001-9926-9066</Identifier>
<AffiliationInfo>
<Affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zambolim</LastName>
<ForeName>Laércio</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003069">Coffee</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2020 Sep 3;15(9):e0238967</RefSource>
<PMID Version="1">32881959</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003069" MajorTopicYN="N">Coffee</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32639982</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0222747</ArticleId>
<ArticleId IdType="pii">PONE-D-19-25123</ArticleId>
<ArticleId IdType="pmc">PMC7343155</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 17;9:1033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30065743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Dec;112(1):114-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16273343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):454-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 13;288(50):35868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2001 Jun;265(4):654-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;537:337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19378153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 17;15:1131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25523007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 May;283(5):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(4):212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2007 Sep;34(9):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17884686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Dec 19;2(12):e1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Dec;7(12):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:285-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):7-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 09;12:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2013 Feb 13;9(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23406322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Feb;11(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 8;343(1):1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Nov;8(11):1113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 May 16;12:240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(1):164-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Jun;109(1):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14997299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2017 Dec;95(6):607-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29094279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(3):503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 25;5:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25506347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jan 11;11:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 31;5:594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25400655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Apr;8(4):612-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2010 Oct;33(4):795-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Feb 26;11(2):e1004674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25719542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Sep 5;345(6201):1181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25190796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Oct;32(10):2760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12850-12855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Oct;7(10):425-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Mar 26;8(7):R226-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2294-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 May;177(1):82-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29563207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2015 Jun 11;14(2):6419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26125847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Oct;33(10):2692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2020 Jan;112(1):312-322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30802599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2013 Jun;141(4-6):217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23677718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2013 Oct 21;4:348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
<li>Éthiopie</li>
</country>
<region>
<li>District fédéral (Brésil)</li>
<li>Minas Gerais</li>
</region>
</list>
<tree>
<country name="Brésil">
<region name="Minas Gerais">
<name sortKey="Barka, Geleta Dugassa" sort="Barka, Geleta Dugassa" uniqKey="Barka G" first="Geleta Dugassa" last="Barka">Geleta Dugassa Barka</name>
</region>
<name sortKey="Caixeta, Eveline Teixeira" sort="Caixeta, Eveline Teixeira" uniqKey="Caixeta E" first="Eveline Teixeira" last="Caixeta">Eveline Teixeira Caixeta</name>
<name sortKey="Caixeta, Eveline Teixeira" sort="Caixeta, Eveline Teixeira" uniqKey="Caixeta E" first="Eveline Teixeira" last="Caixeta">Eveline Teixeira Caixeta</name>
<name sortKey="Ferreira, Savio Siqueira" sort="Ferreira, Savio Siqueira" uniqKey="Ferreira S" first="Sávio Siqueira" last="Ferreira">Sávio Siqueira Ferreira</name>
<name sortKey="Zambolim, Laercio" sort="Zambolim, Laercio" uniqKey="Zambolim L" first="Laércio" last="Zambolim">Laércio Zambolim</name>
</country>
<country name="Éthiopie">
<noRegion>
<name sortKey="Barka, Geleta Dugassa" sort="Barka, Geleta Dugassa" uniqKey="Barka G" first="Geleta Dugassa" last="Barka">Geleta Dugassa Barka</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32639982
   |texte=   In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32639982" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020